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How significant is our astrophysical result?

Pearson χ2: particularly useful when a model for the signal is not
known.

Likelihood Ratio Test (LRT): particularly powerful when the signal
model is known.

Main Limitations:

They require that the models for the background and/or the signal
are correctly specified.

When their aren’t, they do not really us what’s wrong with it
nor they say how to fix it...

... basically, they are of no help in learning from our mistakes!
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Goal

How can we learn from our mistakes?

The goal of this talk is to propose a (not so new) approach to
goodness-of-fit that aims to address precisely this question.

Interestingly, all we need are just two ingredients...

1 A comparison density

2 A smooth model
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To warm up a little bit, let’s start with the 1D case...

Main reference: Algeri S. (2020), Physical Reviews D
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The comparison density
Introduced by Parzen in 1979...

Given a random variable X , let F and f be its cdf and pdf respectively.
Let G a suitable cdf and let g be the respective pdf. Then, the
comparison density between F and G is given by

d(u;G ,F ) =
f
(
G−1(u)

)
g
(
G−1(u)

) with u = G (x), (1)

or equivalently

d(G (x);G ,F ) = f (x)
g(x) . (2)

We assume that f = 0 whenever g = 0.

It follows that...

f (x) = g(x) d(G (x);G ,F ) (3)
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Smooth models

Introduced by Neyman in 1937...

If we represent the comparison density through a series of Tj(x ;G )
orthonormal functions of G (x) then

f (x) = g(x)

{
1 +

∑
j>0

θj Tj(x ;G )

}
︸ ︷︷ ︸

d(G (x);G ,F )

(4)

If we truncate the series at m and we estimate our θjs...

f̂ (x) = g(x)

{
1 +

m∑
j=1

θ̂j Tj(x ;G )

}
⇒ we have estimated

a smooth model! (5)

See Algeri (2020+) for convenient choices of Tj(x ;G ).
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Estimation

For the moment, let’s assume m is fixed to a given number (typically < 10),

θ̂j =
1

n

n∑
i=1

Tj(xi ;G ) ,

for j = 1, . . . ,m and thus

d̂(G (x);G ,F ) = 1 +
m∑
j=1

θ̂j Tj(x ;G )

f̂ (x) = g(x) d̂(G (x);G ,F )

Figure 1. In the upper panel, f is the pdf of

X ∼ Normal[0,30](−15, 15). In this case,

n = 300 and g is a polynomial pdf. The

respective comparison densities are shown in the

bottom panels. In both examples m = 2.
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Inference

H0 : d(G(x);G,F)=1 vs H1 : d(G (x);G ,F ) 6= 1

... but d(G (x);G ,F ) = 1 +
∑

j>0 θjTj(x ;G ) remember?

⇒ d(G (x);G ,F ) = 1 whenever θ1 = θ2 = · · · = 0 !

Deviance test statistic: D =
∑m

j=1 θ̂
2
j

d−→ χ2
m (under H0, as n→∞)

Confidence bands:
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But what are g and f in practice?

It really depends on the astrophysical problem...

For instance...

If we are trying to assess if the background model is correct:

f (x)︸︷︷︸
true (unknown) bkg

= g(x)︸︷︷︸
postulated bkg

d(G (x);G ,F )︸ ︷︷ ︸
comparison density

(6)

If we are trying to detect the signal of a new source:

f (x)︸︷︷︸
truth (may or may not
contain the signal)

= g(x)︸︷︷︸
true (or estimated)

bkg model

d(G (x);G ,F )︸ ︷︷ ︸
comparison density

(7)
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Ok, but what if we are dealing with multidimensional distributions?

Main reference Algeri S. (2020+), arXiv:2009.00503
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From a more technical perspective...

Methodological tasks

Extend the concept of comparison density to more than 1D

Select the “best” estimator for it

Adjust the inference for post-selection
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The joint comparison density

In 1D we considered the density of u = G (x), what do we do now...

Rosenblatt’s transform

u = (u1, . . . , up) =
(
G1(x1), . . . ,Gp(xp|xp−1, . . . , x1)

)
= G (x) ,

the inverse is G−1(u) = x .

The joint comparison density

Let f and F be, respectively, the probability function and the cdf of the
random vector X ∈ Rp. Let g and G be its hypothesized pdf and cdf,

d(u;G ,F ) =
f
(
G−1(u)

)
g
(
G−1(u)

) (8)

Notice that in (8), G (x) 6= G (x).
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Let’s use a convenient representation for it

Let {Sj(u)}j≥0 be an orthonormal (tensor) basis on L2[0, 1]p with

S0(u) = 1. Then,

d(u;G ,F ) = 1 +
∑
j>0

θj Sj(u) with u ∈ [0, 1]p. (9)

with

θj =

∫
[0,1]p

Sj(u) d(u;G ,F ) du. (10)

Ok, but how do we estimate this expansion in this setting?

How do we actually estimate all of the above?

How many (and which) θj coefficients should we use?
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Estimation and model selection

i. Choose a sufficiently large value mmax (e.g., mmax = 20).
ii. Estimate θj , j = 1, . . . ,mmax, via

θ̂j =
1

n

n∑
i=1

Sj (ui ) with ui = G (xi ) (our Rosenblatt transform).

iii. Sort the θ̂j s in decreasing magnitude i.e., θ̂2(1) ≥ θ̂
2
(2) ≥ · · · ≥ θ̂

2
(mmax)

iv. Select the largest m for which AIC (m) is maximum

AIC (m) =

m∑
(j)=1

θ̂2(j) −
2m

n
(Mukhopadhyay, 2017)

v. Set the remaining “nonsignificant” coefficients equal to zero.

Estimated (joint) comparison density

d̂(u;G ,F ) = 1 +
m∑

(j)=1

θ̂(j) S(j)(u)
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An illustrative example...

X1
X2

com
parison

 density

X1

X2

com
parison

 density

Left: True comparison density of a random vector (X1,X2) distributed as a mixture of

two, overlapping truncated bivariate Gaussians when the postulated model is assumed to

be a bivariate truncated normal.Right: Estimated comparison density obtained using

m = 9 out of mmax = 19 coefficients selected via the AIC criterion.
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Post-selection Inference

Similarly to the 1D case we would like to test:

H0 : d(u;G ,F ) = 1 vs H1 : d(u;G ,F ) 6= 1

we know that d(u;G ,F ) = 1 whenever θ1 = θ2 = · · · = 0

WARNING!

When performing model selection the estimators is affected by it. As a result,

D =
m∑

(j)=1

θ̂2(j) 6
d−→ χ2

m (not even under H0 and/or as n→∞).

A possible post-selection adjustment

p-value = P(χ2
mmax

> Dobs)

with Dobs being the value of D observed on the data.
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An example on background calibration

We consider a realistic simulations from the Fermi Large Area Telescope.

Goal: Assess the impact of the (unknown) instrumental error
affecting the hypothesized uniform distribution.

Region of interest A circular a disc in the sky of 30◦ radius and
centered at (195RA,28DEC).

Data: 68,658 events from cosmic background.
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The impact of the instrumental error
Despite we are not going to see how to construct confidence bands, it is worth

mentioning that the theory behind it is essentially the same of that of the look-elsewhere

effect in multiple dimensions (e.g. Vitells and Gross, 2011).
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All of this is nice, but what if we have more than 2 or 3 dimensions?
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Indeed, the real question here is...

What do we want to know about our p > 3 dimensions?

I will discuss these aspect only briefly, but feel free to ask for more details
during the discussion (or check out Sections 5 and 6 of Algeri S. (2020+),
arXiv:2009.00503).
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Are we interested in testing for independence?

Suppose we don’t know anything about the dependence structure, we can learn
about it with a simple plot...

X1

X2

X3

X4

X5

X6
X7

each edge corresponds to a test of hypothesis where we reject the hypothesis of

independence between the two variables connected by the edge. If two variables

are not connected by an edge it means we have independence.
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But what if we do have a G model I want to test...

Variable True (F ) Hypothesized (G) Correct

X6|X1,X2,X5 Poi
[
e
0.03x1+0.02x2 +0.01x2

2 +0.02x5
]

Poi
[
e0.03x1+0.02x2+0.02x5

]
No

X1,X2,X5 N

[(
10
15
11

)
,

(
4 0.5 0
0.5 3 1
0 1 5

)]
N

[(
10
15
11

)
,

(
4 0.5 0
0.5 3 1
0 1 5

)]
Yes

X4|X3 Exponential
(

1
x3

)
Exponential

(
1
x3

)
Yes

X3 Exponential( 1 ) Exponential(0.9) No

X7 T3 Cauchy(0, 1) No
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Are we interested in learning about
the sources of mismodelling?

Suppose we want to know if our G is indeed correct and if it isn’t, we want to
know where the problems are. We can do that with a simple table...

Random vector df (Adjusted) p-value

(X1,X2,X5,X6,X7) 16383 < 10−130

(X1,X2,X5,X6) 256 < 10−130

(X1,X2,X5) 63 1
(X3,X4) 15 1.799 · 10−11

X3 3 3.801 · 10−6

X7 3 3.732 · 10−119

Each row corresponds to a test of hypothesis to asses the validity of the

distribution we have specified for the random vectors in the first column.
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Conclusion

What does informative Goodness-Of-Fit (iGOF) allow us to do?

We can perform goodness-of-fit for both univariate and multivariate
data distributions.

If p ≤ 3 we can visualize where and how mismodelling occurs.

If p ≥ 2 we can learn the underlying dependence structure.

If p ≥ 1 we can identify the sources of mismodelling.
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Thank you for your time.
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